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SYNOPSIS 

For the Shulz distributions with weight-polydispersity from 1.4 to 2.0, the following equation 
is correct: ln[a] = In[710 - a{ln Po + D D  - ln[PF - (PF - Po) X exp(-1.2 X O D ) ] } .  Here, 
Po and PF are viscosity-polydispersities of the initial molecular weight distribution (MWD) 
and the Flory distribution, respectively; a is the Mark-Houwink exponent; and DD = ln(Mno/ 
M a ) .  For more narrow MWDs, the complicated equation is required: In[v] = 1n[olo - a{ln 
Po + DD - In[PF - (PF - Po) X exp(-0.9 X D D  - 0.28 X O D 2 ) ] } .  The inaccuracy of these 
equations is less than 1.5%. 0 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

It is of great practical interest to know the corre- 
lation between intrinsic viscosity and the degrada- 
tion extent of a polymer sample in order to be able 
to measure the degradation degree of the polymer 
using an easy viscometry technique. This correlation 
is simple in the particular case of the Flory distri- 
bution (most probable distribution, MPD) : 

At the same time, the above-mentioned correlation 
is fairly complex if the initial molecular weight dis- 
tribution (MWD) differs from the MPD. An ana- 
lytical approach to the problem solution encounters 
difficulties and yields approximate results.',' In this 
conjunction, it is reasonable to  take advantage of 
computer simulation. So, the method applied in Ref. 
3 makes it possible to compute the intrinsic viscosity 
changes in the case of broad MWD, and the algo- 
rithm described in Ref. 4 is workable for both broad 
and narrow MWDs. The computer program yields 
intrinsic viscosity, weight-average and z-average 
molecular weights, and the full picture of the MWD 
changes under polymer deg rada t i~n .~  I t  is known 
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that many real polymers have MWDs of the Schulz- 
Zimm type.5 Therefore, it is of interest to find reg- 
ularities of the intrinsic viscosity degradative 
changes for the initial Schulz-Zimm distributions. 
It is also desirable to present the generalized results 
in the compact form of an equation. Reference 6 
proposed the approximate equation describing in- 
trinsic viscosity changes: 

where Pw0 is the initial value of the weight-polydis- 
persity, a is the Mark-Houwink exponent, and the 
degradation index (DI )  = M n o / M n  - 1. This equa- 
tion is the refined form of the one given in Ref. 2. 
They both have restricted validity ranges.'S6 A most 
precise approximation has been reached in the pres- 
ent article. This is due to the use of the new param- 
eter of degradation degree: 

DD = ln (Mn/Mno)  

The parameter DD was proposed in Ref. 7 as  the 
one having an additivity property unlike the DI .  
Two empirical equations were derived here, which 
precisely describe the correlation between intrinsic 
viscosity and DD. The equations concern the narrow 
Schulz distributions which have a weight-polydis- 
persity, M,/M,,, of less than 2. 
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EXPERIMENTAL 

The correlation equations were derived on the basis 
of Monte Carlo computer experiments. An algorithm 
and details of the computations were described in 
Refs. 4 and 6. The Schulz MWD is expressed by the 
formula 

q n ( u )  = zb+' X ub X exp(-z X u ) / I ' ( b  + 1 )  

where qn( u )  is the numerical fraction of molecules 
with the polymerization degree u ;  b and z ,  the pa- 
rameters determining polydispersity and M ,  ; and 
r( x )  , the gamma function of x .  In the present work, 
six distributions with diverse coefficients b were in- 
vestigated (Table I ) .  Also, respectively, they have 
diverse polydispersities: 

Table I shows good agreement between the polydis- 
persities calculated from the MWD under the com- 
puter experiments and those predicted by eq. ( 2  ) . 

The changes of MWD were simulated by the 
Monte Carlo modeL6 The initial distribution is pre- 
sented in the computer memory as an array of the 
numbers which are weight fractions of molecules 
with specific molecular weights. The elementary act 
of scission is performed in the following way: The 
program takes a random macromolecule and cuts it 
up. The scission location is performed a t  random as 
well. Further, the program executes a corresponding 
alteration of the MWD. The scission probability is 
the same for every monomer unit. Simulations were 
executed a t  six values of the Mark-Houwink ( M H )  
exponent a (0.5, 0.6, 0.7, 0.8, 0.9, and l . O ) ,  i.e., 36 
computer experiments have been carried out. The 
validity of the simulation results was certified by 
means of the formula which yields the weight-av- 

Table 1 Parameters of Initial MWDs 

Weight-polydispersity 
MWD 
Code b Experimental Theoretical 

A 4.9 1.169 1.169 
B 2.0 1.333 1.333 
C 1.4 1.416 1.416 
D 0.7 1.588 1.588 
E 0.4 1.713 1.714 
G" 0.2 1.830 1.833 

The letter F has been reserved for the Flory distribution. 

0 0.2 0.4 0.6 DD I. 0 

Figure 1 The inaccuracy of Monte Carlo computations 
of the weight-average molecular weight changes under 
polymer degradation. 

erage polymerization degree changes under random 
degradation': 

Here, y is the scission density; u2 and u';, the initial 
and final values of the weight-average polymeriza- 
tion degree; and us is the initial value of the z-average 
polymerization degree, etc. Deviations of the sim- 
ulated values from the eq. ( 3 )  predictions are very 
slight (see Fig. 1 ) . There is no doubt that viscosity- 
average molecular weight data also have such high 
precision. 

RESULTS 

First Approximation 

The computer experiments yielded the precise de- 
pendencies of the viscosity-polydispersity P = M u /  
M ,  upon DD. Some of them are shown in Figure 2. 
One can see that in all the cases the P value gradually 
approaches a certain limit which is the polydisper- 
sity of the Flory distribution and depends upon the 
MH exponent value: 

So, it is reasonable to  transform the primary results 
to the form ( PF - P )  vs. DD. The plots obtained in 
this way are well rectiable in logarithmic scale (see 
Fig. 3 ) .  Here, only the plots of the very narrow dis- 
tributions are slightly convex upward. In the first 
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Figure 2 Dependence of viscosity-polydispersity upon 
DD for some the distributions. The letter notation coin- 
cides with that in Table I. The numerical code designates 
the Mark-Houwink (MH) exponent value. 

approximation, one can allow that all the plots in 
Figure 3 are straight lines: 

l n (PF  - P )  = l n (PF  - Po)  - S X DD 

with the same slope S = 1.2. With this allowance, 
one can write 

-0.5 

-1.0 

- 4  5 

-2.0 

-2 5 

-3.0 

I 
0 0.2 0.4 0.6 DD 1.0 

Figure 3 Transformed experimental data. 

In M ,  = In Mno - DD 

+ l n [ P F - ( P F - P o )  Xexp(-1 .2XDD)] .  

Combination of this expression with the MH equa- 
tion 

yields 

ln[v] = 1n[vlo - a ( ln  Po + DD 

- ln [PF - (PF - Po) X exp(-1.2 X O D ) ]  (5)  

If the initial MWD is an MPD (i.e., Po = P F ) ,  then 
eq. (5) turns into 

ln[v] = ln[vIo - a X DD 

which is equal to (1). To estimate the inaccuracy of 
eq. (5) predictions, the values of the intrinsic vis- 
cosity according to (5) were calculated and compared 
with the computer-simulated ones a t  the corre- 
sponding DD values. Figure 4 demonstrates the 
comparison results. It can be seen that eq. (5) is 
accurate enough, and only for the very narrow dis- 
tributions does the inaccuracy value become ap- 
proximately equal to  the average experimental in- 
accuracy of dilute solution visometry technique 
(about 3%). On the other hand, the practical sig- 
nificance of eq. (5) consists of the possibility of the 
DL) value determination from the intrinsic viscosity 
measurement data. Therefore, it is also reasonable 
to assess the DD estimation inaccuracy. From eq. 
(5), one can compute the DD value by the Newton 
iterative method if the [q] and [77],, values are known. 

-,-  

00.7, G0.6,Orq.O 

0 0.1 0.3 0.5 0.7 D D 1 . 0  

Figure 4 
lation by eq. ( 5 ) .  

The inaccuracy of intrinsic viscosity calcu- 
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Figure 5 The inaccuracy of DD computation by eq. ( 5 ) .  

These computations were performed for all MWDs 
studied at  various conversion degrees and the ob- 
tained DD values were compared with the DD values 
from computer simulation. Relative differences be- 
tween them are displayed in Figure 5 .  It is seen that 
the DD prediction inaccuracy decreases at  low values 
of the MH exponent a (as well as the intrinsic vis- 
cosity predictions accuracy-Fig. 4). Comparison of 
Figures 4 and 5 also shows that the DD prediction 
inaccuracy is more than the one of the intrinsic vis- 
cosity. This difference is particularly pronounced at  
small degrees of degradation because of the relative 
character of the parameter DD: At a low conversion 
degree, even a minor deviation of the estimated DD 
value is comparable with the low real DD value. 
Considering the Figure 5 data, for distributions D, 
E,  and G, one can assume eq. (5) to be fairly accurate. 
Also, for very narrow MWDs, it is necessary to 
search for a more accurate expression. 

Refined Approximation for the Very 
Narrow Distributions 

Plots A, B, and C in Figure 3 are markedly convo- 
luted. To  describe such a curve line by a precise 
function, it is necessary to know its slope at  every 
point in the investigated DD range (from 0 to 1.0). 
Slopes of the above-mentioned plots were calculated. 
It was found that the dependencies of the slope S 
upon DD for the considered MWDs are almost 
straight (see Fig. 6 ) .  Thus, 

S = So + SS X DD (6 )  

where So is the initial slope value and SS is the pro- 
portionality coefficient. The numerical values of So 

and SS are listed in Table 11. As a matter of fact, 
slope S is a derivate of the function ln(PF - P): 

S = -d[ln(PF - P)]/dDD 

Hence, one can write 

Integration of (7) yields 

ln(PF + P )  = Co - So X DD - 0.5 X SS X DD2 

where Co is the integration constant. In the present 
case, Co is equal to ln(PF - Po). As the values of 
coefficients So and SS remain almost unchanged 
(Table 11), they can be accepted as the constants 
with averages: 

so = 0.9 

SS = 0.56. 

With this assumption, the final expression is 

l n [ ~ ]  = 1n[alo - u{  In Po + DD 

- ln[PF - (PF - Po) 

X exp(-0.9 X DD - 0.28 X OD2)]} (8)  

0 0.2 0.4 0.6 D p  1.0 

Figure 6 The dependence of the slope S upon DD. 
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The inaccuracy of the DD predictions by eq. (8) was 
determined by the above-described procedure and it 
is demonstrated in Figure 7(a). A more refined ap- 
proximation may be obtained if the exact values of 
So and SS are used individually for the every pair 
of MWD and the MH exponent, but this is not nec- 
essary. The inaccuracy of the intrinsic viscosity pre- 
dictions by eq. (8) [see Fig. 7(b)] is less than the 
average experimental inaccuracy of the DSV tech- 
nique (- 3%) and, therefore, the deviations of the 
DD predictions by eq. (8) are less than the DD de- 
termination inaccuracy which results from the ex- 
perimental inaccuracy. Thus, eq. (8) is recommended 
to be used for the Schulz distributions with initial 
weight-polydispersity from 1 to 1.4. 

CONCLUDING REMARKS 

Equations (5)  and (8) include the parameters PF 
and Po which are viscosity-polydispersities. The PF 
value may be calculated a t  the specific value of the 
MH exponent by formula (4) with the gamma 
functiong; however, another way exists. I t  has been 
remarked" that  the P value is a linear function of 
the MH exponent. For the Flory distribution, the 
following equation is correct: 

PF = 1.5334 + 0.4666 X a (9 )  

In the case that the Po value is unknown but the 
initial value of weight-polydispersity Pwo is known, 
then the former may be calculated by 

Table I1 Values of Eq. (6) Parameters 

Experiment 
Code S,  ss 
A1.O 
A0.9 
A0.8 
A0.7 
A0.6 
A0.5 
B1.O 
B0.7 
B0.5 
c1.0 
C0.7 
C0.5 

0.785 
0.803 
0.821 
0.839 
0.826 
0.883 
0.895 
0.945 
0.979 
0.948 
0.993 
1.025 

0.633 
0.637 
0.636 
0.638 
0.635 
0.631 
0.554 
0.544 
0.543 
0.484 
0.472 
0.457 

+I0 I 7 

-10 t- I 

0 0.2 0.4 0.6 D D  7.0 

The inaccuracy of (a) the DD computation Figure 7 
and (b) the [77] calculation by eq. (8). 

Po = PWo + 0.4666 X (Pwo - 1) X ( U  - 1) (10)  

Finally, for the narrow Schulz distributions, eqs. (5)  
and (8) in conjunction with eqs. ( 9 )  and ( 10) make 
it possible to calculate the intrinsic viscosity deg- 
radative changes and, vice versa, to determine the 
DD from the data of the intrinsic viscosity mea- 
surement. 
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